去查网 logo

Jacobi polynomials

中文翻译雅可比多项式

同义词释义

    1)Jacobi polynomials,雅可比多项式2)Jacobi's polynomials,雅谷比多项式3)Jacobi determinant,雅可比行列式4)jacobian determinant,雅可比行列式5)Jacobian logarithm formula,雅可比对数式6)Jacobian[dʒæ'kəubiən],雅可比行列式

用法例句

    Jacobi polynomials and its special forms are all fundamental orthogonal polynomials,these polynomial all have important application in the mathematics-physics question.

    雅可比多项式及其特例都是重要的正交多项式,它们在求解数学物理方程中有重要应用。

    It' s proved that the four forms of chemical potential are identical according ot the properties of Jacobi determinant and thermodynamic principle.

    本文利用雅可比行列式的性质及热力学原理,证明了化学势的四种形式是完全等价的,并且给单组分体系的摩尔量以确切的定义。

    Jacobian Determinant and Its Application to Thermodynamics;

    雅可比行列式及其在热力学中的应用

    With applying Jacobian determinant,the equilibrium and stability conditions CV>0,{P/V}T<0 and other forms in the isolated homogeneous system have been deduced by entropy criterion and internal energy criterion.

    应用雅可比行列式,根据熵判据和内能判据详细推求了孤立的均匀物质系统的平衡稳定性条件CV>0,{P/V}T<0及其它多种表达形式。

    The Maxwell relations between the thermodynamic functions were derived with the matrix analysis according to the characteristics of Jacobian determinant in present paper.

    本文根据雅可比行列式的性质,利用矩阵分析的方法,得到热力学中物理量之间的麦克斯韦关系,同时给出一种容易记忆的方法。

    The generation and utilization of extrinsic information is deeply analyzed during the iterative decoding process,and some simplification for branch metric calculation is presented in detail with the trait of Jacobian logarithm formula.

    基于AWGN信道研究了对数域内T-TCM译码算法的表述与简化,重点分析了外信息在迭代译码过程中的产生与使用,结合雅可比对数式的特点详细给出分支度量计算的简化策略。

    A theoretical explanation is given by analyzing the Jacobian logarithm formula and iterative decoding algorithm, and based on the explanation a new T-TCM decoding scheme without SNR estimation is further proposed, with which the T-TCM systems have no performance loss and can be more conveniently applied and easily implemented.

    该文结合雅可比对数式及迭代译码算法的特点从理论上给出了解释,进一步提出无需SNR估计的T-TCM译码方案,在保证性能没有损失的前提下降低了T-TCM的应用要求与实现复杂度。

    The second order Jacobian J_2 is calculated to determine the delay time T of two-dimensional reconstruction about ordinary differential equation according to the first extreme value of J_2.

    提出了二阶雅可比行列式的第一极值来确定二维重构系统的延迟时间,它比用互信息函数第一极小确定延迟时间等方法,可以给出更多信息。

    Some Identities Involving the Jacobi Polynomials and Fibonacci Number;

    雅可比多项式及斐波那契数的一组恒等式

    Indeed, artificial intelligence and the information-processing model of the mind owe more to Piaget than their proponents may realize.

    事实上,皮雅杰对于人工智能和思维之信息处理模式的贡献,比其倡导者可能认识到的更多。

    NEGATIVE JACOBIAN DETECTED AT ELEMENT NO. 24109 OF OBJECT NO. 1!

    负的(无效的)雅可比行列式,说明网格设置有问题。

    A New Method of Image Rectification Using Jacobian Determinant

    使用雅可比行列式的立体像对校正方法

    On the Procedures and Patterns of Multiple Comparisons in Comparative Sentences Using ɡènɡ

    “更”字比较句中多项比较的程序与格式

    The Irreducible Quadratic Factorizations of the Polynomial x~n-bx-a;

    多项式x~n-bx-a的二次不可约因式

    Recurrence Formula for Unreliability Polynomial of Graphs

    图的不可靠性多项式的递推公式(英文)

    The Japanese towels have a more casual look than the elegant, traditional European waffle weave.

    比起高雅的传统欧式华夫格织布,日式毛巾的外观看来普通得多。

    By using Jacobian determinant, the relations of state functions of thermodynamics and the problem solving skills are discussed.

    本文着重讨论运用雅可比行列式推导热力学关系式的技巧问题 .

    "adonijah, Bigvai, adin,"

    亚多尼雅,比革瓦伊,亚丁,

    jacobian method of eigenvalue problem

    特盏问题的雅可比法

    Hamilton-Jacobi equation

    哈密顿-雅可比方程

    Hamilton-Jacobi theory

    哈密顿-雅可比理论

    any distinct quantity contained in a polynomial.

    (数学)多项式中任何可以辩识的量。

    Polynomial Maps with Additive-nilpotent Jacobian Matrix

    带有可加幂零Jacobi矩阵的多项式映射

    Reliability Certification of Global Nonnegativity of Univariate Polynomials

    单变元多项式全局非负性的可信判定

    Judgement Method of Irreducible Polynomial in Two Variables

    有理数域上二元不可约多项式的判别

    The Invertibility of the Polynomial of Back-operator for Time Series Models

    时间序列模型Back算子多项式的可逆性

全部查询工具

关于我们免责声明联系我们网站地图最近更新

免责说明:本站为非营利性网站,本站内容全部由《去查网》从互联网搜集编辑整理而成,版权归原作者所有,如有冒犯,请联系我们删除。

Copyright © 2020 - 2024 quchaw.com All rights reserved.浙ICP备20019715号