去查网 logo

semi magic square

中文翻译半幻方

同义词释义

    1)semi magic square,半幻方2)Franklin semi magic square,Franklin半幻方3)magic square,幻方4)magic squares,幻方5)bimagic square,平方幻方6)magic square constant,幻方常数

用法例句

    In this paper, it is explain that a set of methods of constructing arbitrary 4k orders conserve break sum and conserve 2 orders square sum semi magic square and its rigorous proof.

    给出了任意4k(k∈N)阶保折和且保二阶块和的半幻方的一大类构造方法及其严格证明。

    This paper explained that a set of methods of constructing arbitrary 4k orders conserve square sum semi magic square and its rigorous proof.

    给出了任意4k(k∈N)阶保块和半幻方的一大类造法及其严格证明。

    In this paper, we give and strictly prove a method of constructing a set of n~2-orders pandiagomal magic square by using a n-orders semi magic square.

    给出一种用n阶半幻方造n2 阶泛对角线幻方的方法及其严格证

    In this paper we gives a method of constructing arbitrary 16k orders magic square with characteristic of Franklin semi magic square and its strict proving.

    给出任意16k阶兼有Franklin半幻方特性的幻方的造法及其严格证明。

    This paper presents a set of method for constructing 8k orders Franklin semi magic squares:first making two sequenses of number satisfactori to fixed conditions (their is respectiv called warp column and weft row ),then base on this constructing 8k orders Franklin semi magic square.

    给出一大类构造8k阶Franklin半幻方的方法:先作出满足一定条件的两列数(分别叫做经列和纬行),然后再在这个基础上造出8k阶Franklin半幻方

    This paper gives methods of generating many Franklin semi magic squares from one and its stricitly prove.

    给出由一个产生出多个Franklin半幻方的方法及其严格证明。

    The improved edging method to construct arbitrary magic square;

    改进镶边法构造任意阶幻方

    A construction method for the magic square of even order;

    偶阶幻方的一种构造法及其个数

    Methods of constructing magic squares of order n (n>4);

    n阶幻方(n>4)的几种构造方法

    P~2-order orthogonal latin squares and P~2-orderquadratically and doubly-magic squares and magic;

    P~2阶拉丁方与P~2阶二次、双重和立体幻方

    A method of constructing magic squares of order 4N;

    4N阶幻方构造方法的论证

    Since the first bimagic squares invented by G.

    从1890年法国G·Pfeffermann发明了第一个平方幻方至今,幻方得到了空前发展。

    Arbitrary 16k Orders Magic Square with Characteristic of Franklin Semi Magic Square;

    任意16k阶兼有Franklin半幻方特性的幻方

    Constructing A Set of n~2-orders Pandiagonal Magic Square by Using a N-orders Semi Magic Square;

    用n阶半幻方造n~2阶泛对角线幻方

    A Set of Methods of Constructing Arbitrary 4k Orders Conserve Square Sum Semi Magic Square;

    任意4k阶保块和半幻方的一类造法

    Constructing 8k Orders Franklin Semi Magic Square by Using Warp Column and Weft Row;

    用经列和纬行造8k阶Franklin半幻方

    A New Method of Constructing the Franklin Semi Magic Square of Rbirari 8 K Orders;

    任意8k阶Franklin半幻方的又一造法

    Semi-period of doubly even order magic square transformed digital image.

    双偶阶幻方变换数字图像的半周期

    Orthogonal Semi pandiagonal Latin Squares and Pandiagonal Magic Squares

    正交半泛对角线拉丁方与泛对角线幻方

    Throughout that night I lay in the purple limbo between sleeping and waking.

    我在半睡半醒的缥缈幻境中度过整晚。

    THE STUDY OF THE STRUCTURE LAWS OF ANY MAGIC SQUARE OF SINGLE EVEN──ORDER

    单偶阶幻方──任意阶幻方构造规律研究

    The Black Horse in Multi-Ordered Magic Squares--the Magic Square of Order 3, Rank 12;

    高次幻方中的“黑马”——12阶3次幻方

    The Aictory of Fantasy--About Modern Western Fantasy Literature;

    幻想的胜利——浅论西方现代奇幻文学

    an imaginary realm of marvels or wonders.

    充满奇迹的幻想的地方。

    Discusses Fantasy Style and Influence of Bach "Chromatic Fantasia and Fugue";

    浅谈巴赫《半音阶幻想曲与赋格》的幻想性风格及其影响

    The manner in which one sees or conceives of something.

    幻想,梦幻由想像产生的思维、想象某物的方式

    The right hemisphere of the brain is the seat of imagination, intuition, creation, and daydreaming.

    人脑右半球是想象力、直觉、创造力和幻想的中心。

    He plodded on for half an hour, when the hallucination arose again.

    经过半个钟头的跋涉之后,这种幻觉又出现了。

    We bring you a fantastic itinerary that will lead you to the Iberian Peninsula.

    我们为您设计了伊比利亚半岛的奇幻路线。

    He remained always a mystery, living a life half-real, half-legendary.

    他始终是个神秘人物,过着一种半真实,半虚幻的生活。

全部查询工具

关于我们免责声明联系我们网站地图最近更新

免责说明:本站为非营利性网站,本站内容全部由《去查网》从互联网搜集编辑整理而成,版权归原作者所有,如有冒犯,请联系我们删除。

Copyright © 2020 - 2024 quchaw.com All rights reserved.浙ICP备20019715号