去查网 logo

sobolev embedding theorem

中文翻译水列夫嵌入定理

同义词释义

    1)sobolev embedding theorem,水列夫嵌入定理2)the Sobolev's embedding theorem,索波列夫嵌入定理3)Embedding theorem,嵌入定理4)imbedding theorems,嵌入定理5)Imbedding theorem,嵌入定理6)The imbedding theorem,嵌入定理

用法例句

    Orbifold embedding theorem;

    Orbifold嵌入定理

    Ideals and embedding theorem of co-residuated lattices;

    余剩余格的理想和嵌入定理

    A proof of the embedding theorems in the spaces of W_0~(1,N)(Ω) and W~(1,p)(R~N)

    关于空间W_0~(1,N)(Ω)与W~(1,p)(R~N)上嵌入定理的一种证明

    In this paper, we first introduce a new kind of A~(λ_3)_r (λ_1, λ_2,Ω) two-weight, then we obtain some two-weight integral inequalities which are generalizations of the imbedding theorems, Poincare inequality, Caccioppoli-type estimate and weak reverse Holder inequality for differential forms when α= 1.

    在本文中,我们首先引入了一种新的A_τ~(λ_3)(λ_1,λ_2,Ω)双权,然后得到了当α=1时,微分形式的局部双权的嵌入定理,Poincare不等式,Caccioppoli型估计和弱逆H(?)lder不等式。

    This paper considers the imbedding theorems of Sobolev space in one dimensional.

    考虑一维区域上的Sobolev空间的嵌入问题,应用牛顿-莱布尼茨公式、柯西不等式、H觟lder不等式给出了一系列嵌入定理的直接证明。

    We establish the estimates of positive solutions to a strongly coupled ecological systems in L∞(0,T;H1(Ω)) by energy methods and using Sobolev imbedding theorem and interpolation.

    运用能量方法,通过采用嵌入定理、内插不等式建立了非线性强耦合生态系统正解的L(∞0,T;H(1Ω))估计。

    The commonly Sobolev imbedding theorem is developed to domain of special regularity.

    将常用的Sobolev嵌入定理推广到具有特殊正则性的区域上去,并证明了强局部Lipschitz性质和一致Cm-正则性区域下的嵌入定理。

    In a class of Besov-type normed linear spaces of multivariate periodic functions with a given mixed modulous of smoothness some imbedding theorem and trace theorems are established.

    在多元周期的Lp(1<p<∞)空间内,对一类具有一定混合光滑模的、被赋以Besov型范数的线性子空间,利用Nikolskii-Lizorkin型的函数表现定理证明了嵌入定理、迹定理及其逆定理(延拓定理)。

    An existence theorem of weak solution to a class of biharmonic equation was proved by the sub-super-solution method,the imbedding theorem and the Leray-schauder fixed point theorem.

    利用上下解方法、嵌入定理和Leray-Schauder不动点定理证明了一类双调和方程弱解的存在性定理。

    Embedding Theorems and the Discreteness of the Spectrum of a Class of Differential Opertors;

    嵌入定理及一类微分算子谱的离散性

    The Imbedding Theorems of Sobolev Space in One Dimensional

    一维区域上的Sobolev空间的嵌入定理

    (2)The embedded spacedimensions m should be advisably large, usually larger than the dimensions prescribed by the embedding theorem.

    (2)嵌入相空间的维数应该适当大些。 通常应该高于嵌入定理给出的数值。

    Compact Imbedding Theorems for Variable Exponent Spaces with Unbounded Domains and Their Applications;

    无界区域上变指数空间的Sobolev紧嵌入定理及其应用

    Compact Trace in Weighted Variable Exponent Sobolev Spaces W~(1, p(x))(Ω;v_0, v_1);

    带权变指数索伯列夫空间W~(1,p(x))(Ω;v_0,v_1)的迹嵌入定理

    A proof of the embedding theorems in the spaces of W_0~(1,N)(Ω) and W~(1,p)(R~N)

    关于空间W_0~(1,N)(Ω)与W~(1,p)(R~N)上嵌入定理的一种证明

    GPS based on embedded microprocessor

    基于嵌入式微处理器的GPS定位系统

    fix, force, or implant.

    固定,强加,或嵌入。

    The Design and Development of Embedded Navigation and Orientation GIS;

    嵌入式导航定位地理信息系统的设计与开发

    Semi-custom Physical Design Methodology Research Based on Owned Embedded System CPU

    基于自主嵌入式处理器的半自定制物理设计方法研究

    Embedded Data Processing and Transmission Based on Multi-Network for Mobile Spatial Locating;

    面向移动空间定位的多网络嵌入式数据处理与传输

    Studying Urban Movement:Clarification of Theoretical Traditions and the Insertion of the Chinese Experience;

    都市运动研究:理论传统的界定和中国经验的嵌入

    The Local Governance Model Based on Embedded National-Local Relationship

    “嵌入式自治”:国家—地方互嵌关系下的地方治理

    Handtailor the startup application of Embedded Linux

    定制嵌入式Linux系统的启动程序

    Design and Realization of Embedded GPS Orientation System;

    嵌入式GPS定位系统的设计与实现

    GPS Global Positioning System Based ARM9;

    基于ARM9嵌入式GPS定位系统

    The Customization Research and Application of Specific Embedded Platform BootLoader;

    专用嵌入式平台BootLoader定制研究及应用

    Research on Mobile Position System Based on Linux;

    基于嵌入式Linux的手机定位系统的研究

全部查询工具

关于我们免责声明联系我们网站地图最近更新

免责说明:本站为非营利性网站,本站内容全部由《去查网》从互联网搜集编辑整理而成,版权归原作者所有,如有冒犯,请联系我们删除。

Copyright © 2020 - 2024 quchaw.com All rights reserved.浙ICP备20019715号